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Abstract  
The Algebraic Cluster Model(ACM) is an interacting boson model that gives the relative 

motion of the cluster congurations in which all vibrational and rotational degrees of 

freedom are present from the outset. We schemed a solvable extended transitional 

Hamiltonian based on ane SU (1; 1) Lie algebra within the framework for two-, three- 

and four- body algebraic cluster models that explains both regions O(4) U(3), O(7) 

U (6) and O(10)-U(9), respectively. We offer that this method can be used to study of k 

+  x  nucleon structures with k =  2, 3, 4 and x =  1, 2, . . . 
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Introduction  
Algebraic models are advantageous in the many-body 

and in few-body systems. In algebraic models energy 

eigenvalues and eigenvectors are obtained by 

diagonalizing a finite-dimensional matrix, rather 

than by solving a set of coupled differential equations 

in coordinate space. The aim of this paper is to 

discuss the quantum phase transitions in the algebraic 

cluster models for the two-, three- and four- body 

cluster, to transition description in U (3)-O(4), 

U (6)-O(7) and U (9) - O(10). This model can be 

solved by using an infinite dimensional algebraic 

technique in the IBFM framework and was applied 

to the k +  x  nucleon structures consisting of k -

particles and x  nucleons. The expectation value of 

boson number operator and behavior of the overlap of 

the ground-state wave function within the control 

parameters of this evaluated Hamiltonian are presented. 

Theoretical Framework 
We consider two dynamical symmetries of the ACM 

Hamiltonian for the n-body problem which are related 

to the group lattice 
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which are called the U(3n- 2) and SO(3n- 23) limits of 

the ACM, respectively. A geometric analysis shows that 

the U(3n-2) limit corresponds for large N to the 

(an)harmonic oscillator in 3(n-1) dimensions and the 

SO(3n-3) limit to the deformed oscillator in 3(n-1) 

dimensions[1,2]. 

 The method for diagonalization of the Hamiltonian in 

the transitional region is not as easy as in either of the 

limits, especially when the dimension of the 

configuration space is relatively large. To avoid these 

problems, an algebraic Bethe ansatz method within the 

framework of an infinite dimensional SU(1; 1) Lie 

algebra has been proposed by Pan et al [3].  

The boson algebraic structure will be taken to two-, 

three- and four cluster systems with 
1

2

fj   as: 
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The following Hamiltonian for description of negative 

and positive states in transitional region for two-cluster 

systems is prepared 

0

0 0 1 2 2(O (3)) (Spin (3))B BFH gS S S C C  
 

                 (2) 

By employing the generators of Algebra SU (1; 1) and 

Casimir operators of subalgebras , the following 

Hamiltonian for transitional region for three-cluster is 

suggested as 

0

0 0 1 2 2 2(O (6)) ( (3)) (Spin (3))B B BFH gS S S C C O C   
  

     

                                                                                      (3) 

In a four-cluster model, the Hamiltonian for the 

transitional region can be considered as 

0

0 0 1 2 2 2(O (9)) ( (3)) (Spin (3))B B BFH gS S S C C O C   
  

       
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                                                                                     (4) 

For evaluating the eigenvalues of the suggested 

Hamiltonians, the eigenstates are considered as 

1 2 3
; ,L ....

k

BF

s b x x x xk v v n JM S S S S lw   

              (5) 

The eigenvalues of Hamiltonians Eqs. (2), (3) and (4) 

can then be expressed; 
(k) (k) 0

1E = h L(L 1) J(J 1) T(T 1)                      (6) 

(k) (k) 0

1E = h v(v 4) L(L 1) J(J 1)                    (7) 

 
(k) (k) 0

1E = h v(v 7) L(L 1) J(J 1)                    (8) 

k
(k)

i=1 i

h =
x


                                                              (9) 

Results and discussion  
The quantal order parameter that we mention here are 

the expectation values of the boson number operators. 

The expectation values of nb are the significant 

objectives of phase transition. So, we calculated these 

values to show the treatment of phase transition. In 

order to calculate the expectation values of the b-boson 

number operator, we have to select the suitable roots. 

Given the proper amount of roots, we have calculated 

<nb > for two, three and four - clusters in odd-A nuclei. 

Fig.1 shows the expectation values of the b-boson 

number operator for the lowest states odd-A nuclei  as a 

function of control parameter for N = 10 bosons. The 

sudden change in these quantities show the phase 

transition. Figures show that the expectation values of 

the number of vector-bosons remain approximately 

constant for a limit and only begin to change rapidly for 

the other limit. 

 
FIG. 1. The expectation values of the vector-boson 

number operator for the lowest states as a function of 

control parameter C for N=10. 

It has been shown that the overlap of the ground-state 

wave function with that in the dynamical symmetries 

may also serve as a signature of the phase transition [4]. 

We have calculated the overlap of the ground state wave 

functions of the Hamiltonian (2). The obtained results 

are illustrated in Fig.2.  

 
FIG. 2: The Calculated variation behavior of the overlap of the 

ground-state wave function as a function of control parameter 

C for N=10 . 

Conclusions  
In this paper, we have studied the phase transitions of 

the algebraic cluster models. solvable extended 

transitional Hamiltonian which is based on SU(1; 1) 

algebra is proposed to investigation of quantum phase 

transition between the spherical and the deformed 

phases. solvable extended transitional Hamiltonian 

which is based on SU(1; 1) algebra is proposed to pave 

the way for of quantum phase transition between the 

spherical and the deformed phases. for investigating 

odd-A and odd-odd nuclei. So, the clustering survives 

the addition of one and two particles. we have presented 

here a analysis of quantum phase transitions in a system 

of N bosons and one fermion. 
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