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Abstract  
In this paper, a numerical method for unsteady subcooled flow boiling based on the quasi-

homogeneous flow model (QHFM) is presented. Finite volume techniques based on the staggered 

mesh are used for spatial discretization and ESDIRK scheme is administered to achieve arbitrary high 

order of temporal accuracy. The nonlinear equations are solved by the Newton-Krylov method. To 

validate the method, the predicted results are compared with the experimental data and a good 

agreement is found between the results. The numerical results show that the use of higher order 

schemes leads to more accurate consequences. Also for each scheme, the smaller the time step the 

more accurate the predicted results. The effect of using higher order methods in reducing the cost of 

computations was investigated and we found that the cost of computation significantly reduced using 

the ESDIRK schemes. 
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Introduction 

Simulation of the two-phase flow plays a crucial role in 

nuclear reactor safety. The mathematical description of 

the unsteady two-phase flow is provided with a set of 

PDE equations. Mathematical models are used to 

discretize a set of PDE equations in space and time. The 

finite volume method is usually used for spatial 

discretization of the governing equations [1]. For 

temporal discretization, the backward or forward Euler 

method (first order or second order accuracy in time) are 

well known and widely used.  

In two-phase flow problems, the time step size is small 

[2]. In order to take larger time steps without decreasing 

the temporal accuracy, a higher order time discretization 

scheme is proposed.  

Many researchers applied the implicit RK methods to 

unsteady flows. Bijl et al. [3, 4] studied different time 

integration methods for unsteady 2-D laminar fluid 

around a cylinder. In these work Bijl and coworkers 

focus on the explicit first stage singly diagonally 

implicit Runge-Kutta (ESDIRK) scheme that is a subset 

of the RK methods. Ijaz and Anand [5] presented the 

SIMPLE-ESDIRK scheme for the unsteady 

incompressible, viscous 2-D fluids. Also, Lopez et al. 

[6] developed a numerical method based on the 

ESDIRK scheme to model 1-D subcooled boiling two-

phase flow in the upward flow channel. They used the 

quasi-homogeneous flow model (QHFM) to describe 

the two-phase flow model and at each stage the pressure 

correction equation was obtained by the SIMPLE 

algorithm. In summary, a combination of SIMPLE 

algorithm and ESDIRK method was introduced for 

simulation of the subcooled flow boiling. The result of 

this research is that although the SIMPLE method is an 

accurate method, however, to get the right answer, the 

code needs a lot of iterations for convergence. The CPU 

time of the above method is also high, this is an 

important problem especially for modeling transient 

flow where CPU time is the main matter. To solve these 

problems, we need more efficient computational scheme 

in order that with less computational cost, an acceptable 

response achieved. 

Physical model and solution methods 

In the present study, a numerical method for the 

unsteady subcooled flow boiling based on the quasi-

homogeneous flow model is presented. At present, the 

work focuses on the use of the implicit high-order RK 

methods in relation to the Newton-Krylov scheme. In 

this procedure, different ESDIRK schemes to achieve 

the arbitrary higher order of the temporal accuracy is 

used and the resulting nonlinear equations are solved by 

the Newton-Krylov method. The key to success of the 

JFNK is an efficient preconditioning of the GMRES. 

Therefore, a generalized minimal residual (GMRES) 

scheme [7] as the Krylov method for solving the 1-D 

QHFM in the two-phase fluid problem in a vertical 

channel is presented. Likewise, an incomplete LU 

factorization with the dual truncation (ILUT) scheme is 

used to precondition the Krylov solver GMRES. 



 

In the present study the conservation equations assumed 

quasi-homogeneous, incompressible flow. It should be 

noted that, while quasi-homogeneous flow model 

(QHFM) has a wide range of applicability, there are 

certain limitations in the developed method due to its 

mathematical formulation and implemented 

correlations. The QHFM formulation is not sufficient 

for cases with large relative phase velocities, counter-

current flow, or condition where the flow regime 

changes radically. 

 

 

 

Fig.1. Comparisons of results 

 

Fig. 2. Variation of MAE vs. time step (Δt) 

 

Results and discussion  
To confirm the analytical capability and effectiveness of 

the present method, the present method has been applied 

to experimental test Bartolomei and Chanturiya [8]. 

This experiment covers a wide range of conditions. Fig. 

1 shows a comparison of the numerical results (void 

fraction vs. quality) of the present method obtained by 

RK 4th order method and the experimental data for the 

cases studied. 

Fig. 1 shows that there is a good agreement between the 

numerical results and experimental data. Fig. 1 

illustrated that for a wide range of pressures and 

different working conditions, the present model can 

provide accurate and reliable results. 

Fig. 2 displayed that for smaller time steps, the slope of 

the diagrams is greater this means that for smaller time 

steps, the error decreases faster. Furthermore, the high-

order RK multistage schemes (ESDIRK methods) have 

different effects on different cases. For example, for 

case 1 (68 bar) and with the ESDIRK4 procedure and 

with a time step of dt =0.4 the void fraction MAE 0.01 

is obtained, while the EB1 approach to achieve the same 

accuracy requires dt=0.05. Notice that the size of time 

step used by the ESDIRK4 method is eight times the 

Euler's method.  

 

Conclusions  
The results of the calculation obtained by the proposed 

method showed good agreement with the experimental 

data. In order to calculate the error between the 

computational results and the experimental data, the 

void fraction MAE versus the time step is also 

evaluated. It was found that the use of higher order 

schemes such as ESDIRK4 leads to more accurate 

results. Furthermore, the use of the ESDIRK4 method 

makes it possible to use the time step eight to thirteen 

times larger than Euler method, but the same precision 

is achieved. For all schemes, It was found that the 

smaller the time step, the more accurate the results. 
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