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Abstract  
In present work, the Faddeev AGS equations were solved in momentum representation for 𝐾𝐾𝑁𝑁 four-

body system with quantum numbers 𝐽 = 0 and 𝐼 = 0. The Faddeev calculations are based on the quasi-

particle method and the method of the energy dependent pole expansion was used to obtain the separable 

representation for the integral kernels in the three- and four-body equations. Different types of 𝐾𝑁 −
𝜋Σ potentials based on phenomenological and chiral SU(3) approaches were used. As a remarkable 

result of this investigation, it was found that the four-body 𝐾𝐾𝑁𝑁 system is bound with a binding 

energy of 𝐵𝐾𝐾𝑁𝑁 = 38-83 MeV and width of 𝛤𝐾𝐾𝑁𝑁 =50-114 MeV. 
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Introduction  
The 𝐾𝑁 interaction, which is affected by Λ(1405) 

resonance, plays an important role in the exotic systems, 

including the antikaon particle [1,2]. Thus, to study the 

kaonic systems, it is necessary to know the 𝐾𝑁 

interaction. The first prediction of a quasi-bound state in 

kaonic nuclear systems was made in [2,3], showing that 

these systems could be strongly bound. For the past two 

decades, many theoretical and experimental searches 

were performed, focusing on the three- and four-body  

kaonic systems(especially 𝐾−𝑝𝑝 system) [4-15].  

The purpose of the present paper is to explore the 

binding energy and width of four-body 𝐾𝐾𝑁𝑁 system 

including kaon and antikaon particles. The problem can 

be solved using methods developed within four-body 

theories [16-18].  

Three and four-body calculations 
The quantum numbers of the 𝐾𝐾𝑁𝑁 system are 𝐽 = 0 

and 𝐼 = 0, in actual calculations, when we include 

isospin and spin degrees of freedom the number of 

configurations is equal to eighteen, corresponding to 

different possible two-quasi-particle partitions. In the 

case of 𝐾𝐾𝑁𝑁 system, we have one pair of identical 

nucleons. Therefore, we will have five different 

subsystems.  

𝜎 = 1:  𝐾 + (𝐾𝑁𝑁);     𝜎 = 2:  𝐾 + (𝐾𝑁𝑁) 

𝜎 = 3:  𝑁 + (𝐾𝐾𝑁);     𝜎 = 4:  (𝐾𝐾) + (𝑁𝑁) 

𝜎 = 5:  (𝐾𝑁) + (𝐾𝑁)                                                  (1) 

Since, in Faddeev method the dynamics of all particles 

can be fully included, in present calculations, we used 

the Faddeev AGS method. The whole dynamics of 

𝐾𝐾𝑁𝑁 four-body system is described in terms of the 

transition amplitudes 𝐴
𝜎(𝑖)𝜌(𝑗);𝜇𝜈

𝐼𝑖𝐼𝑗
 which connect all 

quasi-two-body channels. Antisymmetrization of 

nucleons to be made within each channel. The Faddeev 

equations for kaonic systems under consideration can be 

expressed by [19] 

 

𝐴
𝜎(𝑖)𝜌(𝑗);𝜇𝜈

𝐼𝑖𝐼𝑗

= 𝑅
𝜎(𝑖)𝜌(𝑗);𝜇𝜈

𝐼𝑖𝐼𝑗
+ ∑ ∑ 𝑅𝜎(𝑖)𝜏(𝑘);𝜇𝜆

𝐼𝑖𝐼𝑘

𝐼𝑘𝐼𝑙𝜏;𝑘𝑙;𝜆𝜅

𝜗𝑘𝑙;𝜆𝜅
𝜏;𝐼𝑘𝐼𝑙𝐴

𝜎(𝑙)𝜌(𝑗);𝜅𝜈

𝐼𝑙𝐼𝑗
 

(2) 

Here, the operators 𝐴
𝜎(𝑖)𝜌(𝑗);𝜇𝜈

𝐼𝑖𝐼𝑗
 are the four-body 

transition amplitudes, which describe the dynamics of 

the four-body 𝐾𝐾𝑁𝑁 system and the 𝜗
𝑘𝑙;𝜆𝜅

𝜏;𝐼𝑖𝐼𝑗
 functions are 

the effective propagators. To define the spectator particle 

or interacting particles in each two- and three-body 

subsystem, we used the 𝑖, 𝑗 and 𝑘 indices and the isospin 

of the interacting particles are defined by 𝐼𝑖 . The indices 

𝜇, 𝜈 are used for defining which term of the separable 

expansion of the subamplitudes is used. The operators 

𝑅
𝜎(𝑖)𝜌(𝑗);𝜇𝜈

𝐼𝑖𝐼𝑗
 are driving terms, which describe the 

effective particle-exchange potential realized by the 

exchanged particle between the quasi-particles in 

channels 𝜎 and 𝜌. 

 

Results and discussion  
Before we proceed to represent the obtained results, we 

will have a survey on the two-body interactions. The 

two-body interactions are the central input to our few-

body calculations. We used separable potentials in 

momentum representation in the form 

𝑉𝐼
𝛼𝛽

= 𝑔𝐼
𝛼𝜆𝐼

𝛼𝛽
𝑔𝐼

𝛽
                                                        (3) 

where 𝑔𝐼
𝛼 is the form factor of the interacting two-body 

with isospin 𝐼 and  𝜆𝐼
𝛼𝛽

 is the strength parameter of the 

interaction. The interactions are further labeled by 𝛼 

values to take the 𝐾𝑁 − 𝜋Σ and 𝐾𝐾 − 𝜋𝜋 − 𝜋𝜂 

couplings into account. To describe the 𝐾𝑁 interaction, 

which plays a crucial role in the present calculations, we 

considered two different phenomenological [20] and one 

chiral potential [21]. Depending on a pole structure of 

the Λ(1405), we refer phenomenological potentials as 
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“𝑆𝐼𝐷𝐷1” and “𝑆𝐼𝐷𝐷2” potential. For nucleon-nucleon 

interaction is the one-term PEST potential from Ref. 

[22], which is a separable approximation of the Paris 

model of 𝑁𝑁 interaction. 

We constructed our own potentials for the coupled-

channel 𝐾𝐾 − 𝜋𝜋 and 𝐾𝐾 − 𝜋𝜂 interactions. To define 

the parameters of the potential, we used the mass and 

width of the 𝑓0 and 𝑎0 (mass 985 MeV/c2 and the width 

60 MeV) resonances and the 𝐾𝐾 scattering length [23]. 

For 𝐾𝑁 interaction with isospin 𝐼 = 0,1, the range 

parameters of the potentials were set to 3.9 fm-1 and the 

strength parameters are adjusted to reproduce the 𝐾𝑁 

scattering length [24-26]. 

Starting from Faddeev AGS equations (2) and using 

different versions of the 𝐾𝑁 − 𝜋Σ potentials, the binding 

energy and width of the 𝐾𝐾𝑁𝑁 quasi-bound state were 

evaluated. In Table (1), the pole position of the quasi-

bound states in the 𝐾𝐾𝑁𝑁 system are presented. The 

energy-dependent potentials provide a weaker 𝐾𝑁 

attraction for lower energies. Therefore, one expects 

that, the quasi-bound states resulting from the energy-

dependent potential happen to be shallower. The 

comparison of the obtained results for the chiral  𝐾𝑁 

interaction with the calculated binding energies for 

phenomenological 𝐾𝑁 interaction shows that energy-

independent potentials produce much deeper bound 

state. 

To solve the four-body Faddeev equations, we used the 

quasi-particle method [16-18]. The key point of the 

quasi-particle method is the separable representation of 

the off-shell scattering amplitudes in two- and three-

body subsystems. To reduce the four-body Faddeev 

equations to a set of single-variable integral equations, 

one can employ different methods [17,27]. One can do 

the reduction procedure numerically by making use of 

the so-called HSE method proposed by Narodetsky [17] 

and also by using the energy-dependent pole expansion 

method which developed by Sofianos et al., [27]. Using 

the EDPE method, we found the separable expressions 

for the [3+1] and [2+2] subsystems. 

Tables 
Table 1. Dependence of the pole position (in MeV) of 

the 𝐾𝐾𝑁𝑁 system to the 𝐾𝑁 model of interaction.  
𝐾𝑁 model 𝑆𝐼𝐷𝐷1 𝑆𝐼𝐷𝐷2 chiral 

𝐾𝐾𝑁𝑁 
pole 

2786-i57 2816-i25 2831-i30 

 

To take the coupling between 𝐾𝑁 and 𝜋Σ channels and 

the coupling between 𝐾𝐾, 𝜋𝜋 and 𝜋𝜂 directly into 

account, the formalism of Faddeev equations in (1) 

should be extended to include the particle channels [28]. 

Thus, all operators should have particle indices for each 

state in addition to the Faddeev indices. In the present 

calculations, the 𝜋Σ channel of the  𝐾𝑁 − 𝜋Σ and 𝜋𝜋 and 

𝜋𝜂 channel of the 𝐾𝐾 − 𝜋𝜋 − 𝜋𝜂 system have included 

indirectly and one-channel Faddeev AGS equations are 

solved for the 𝐾𝐾𝑁𝑁 system. We approximated the full 

coupled-channel interaction by constructing the so-

called exact optical potential [28]. 

 

Conclusion  
In summary, we extracted the binding energy and width 

of the four-body 𝐾𝐾𝑁𝑁 system by using the Faddeev-

type calculations. To investigate the dependence of the 

resulting binding energy and width on the 𝐾𝑁 models of 

interaction, different versions of 𝐾𝑁 potentials having 

the one- or two-pole structure of Λ(1405) resonance, 

were used. Our calculations show that the 𝐾𝐾𝑁𝑁 system 

is bound for all models of interaction. The obtained 

binding energy is 38-83 MeV and the extracted width is 

about 50-114 MeV. 
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