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Abstract  
In this work, we have studied the effect of nuclear deformation on thermodynamic properties of 
96Mo. We have used the BCS average value model to consider thermal fluctuations. In this model, 

thermodynamic quantities are calculated using the mean value of the gap parameter. The results 

show that nuclear deformation has a significant effect on nuclear level density, as it is found 

experimentally. 
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Introduction  
BCS theory was first proposed in 1957 by Bardeen, 

Cooper, and Schrieffer to justify the behavior of 

superconductors [1]. This model describes 

superconductivity in infinite systems of electrons very 

well. In superconductors, electrons close to Fermi level 

interact to form a pair known as the Cooper pair. 

In nuclei, similar superconducting behavior occurs, 

which is caused by the pairing interaction between 

nucleons. The pairing strength is determined by a 

parameter called the gap parameter, . In the case of 

nuclei, with limited size and limited number of particles, 

the effect of thermal fluctuations is not negligible and it 

is especially important in a phenomenon called the 

pairing phase transition [2]. 

The phase transition in superconductors are quite 

sudden, as a result, the heat capacity suffers 

discontinuity at critical temperature where the gap 

parameter becomes zero. The same phenomenon is 

observed in the nuclear system, with the difference that 

the phase transition in the nuclei has an S-shaped 

behavior, which refers to the thermal phase transition in 

nuclei. 

 

Theory 
The BCS superconductivity model uses the most 

probable value of the gap parameter to calculate the 

thermodynamic quantities of systems [1]. However, due 

to the small size of nucleus and the small number of 

nucleons, there is a fundamental deviation between the 

most probable value of the gap parameter and its 

average value. In the BCS average value model, BCS 

relationships are optimized using the isothermal 

probability distribution function [3]. In this method, 

using the isothermal probability distribution function, 

the mean value of the gap parameter in the BCS model 

()  is calculated and this value is used to determine the 

thermodynamic quantities of the system. The probability 

of a system being in a certain state with a certain value 

of the gap parameter is proportional to e 

. In this 

model, the average value of the gap parameter is 

obtained from the following equation [3]: 
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The grand partition function in this model is as follows 
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In the above relation, k is the single particle energy of 

particles, G is the strength of the interaction,  is the 

chemical potential, β is the inverse of the nuclear 

temperature,   is the mean value of the gap parameter, 

and Ek is the quasi-particle energy without the 

interaction. 

So the thermal quantities such as particle number, 

excitation energy, entropy, heat capacity and nuclear 

level density can be calculated  [3] 
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where  D is a 3 × 3 determinant containing second-order 

derivatives of the grand partition function at the saddle 

point. 



 

 

 

Results and discussion  
To calculate the energy of the single-particle levels, we 

use the Nilsson model [4]. Since 96Mo is a deformed 

nucleus (2 = 0.17), we perform our calculations for two 

different deformations (2 = 0.17 and 2 = 0). First, we 

calculate the neutron and proton gap parameters versus 

temperature, shown in figures 1 and 2, respectively. 

Then, using the gap parameter, other  

 
Figure1. Temperature dependence of gap parameter in 
96Mo nucleus at two deformations for neutron system.  

 
Figure 2. Temperature dependence of gap parameter in 
96Mo nucleus at two deformations for proton system. 

 

thermodynamic quantities can be calculated. The 

calculated heat capacity and nuclear level density at two 

different deformations are shown in figures 3 and 4, 

respectively, as well as the experimental results. 

 
 

Figure 3. Heat capacity versus temperature in 96Mo 

nucleus at two deformations. 

 
Figure 4. Nuclear level density versus excitation energy 

in 96Mo nucleus at two deformations. Experimental data 

were taken from [5]. 

 

Conclusions  
It can be seen from figures (1) amd (2) that the gap 

parameter does not vanish with increasing temperature 

but, rather reaches an almost constant value. For 2 = 

0.0, the decrease of gap parameter is slighly more rapid 

at high temperatures. Figure (3) shows the S-shape heat 

capacity at two deformations which is interpreted as a 

phase transition from the pairing phase to the normal 

phase, as it is confirmed experimentally [5]. The 

calculated nuclear level density versus excitation energy 

at two different deformations are plotted in figure (4) as 

well as the experimental results. As it is seen, the 

experimental results are consistent with the calculated  

level density at 2 = 0.17. 

In summary, inclusion of both thermal fluctuations and 

deformation (2=0.17) lead to a significant improvement 

of the calculated level density compared with the 

experimental results. 
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