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Abstract  
Today in nuclear reactor calculations, researchers are looking for methods that, in addition to the 

acceptable accuracy, have optimal calculation cost. One of the ways to increase the accuracy of 

calculations without reducing the node size in the nodal expansion method is the use of suitable 

weighting functions. In this study, after discretization of the neutron diffusion equation and adjoint 

with high-order nodal expansion method in two dimensions and two energy groups, calculations with 

Momentum and Galerkin weighting functions for rectangular geometry (BIBLIS-2D) and hexagonal 

geometry (IAEA-2D) reactors are performed.  

Keywords: Simulator, Adjoint Calculation, Diffusion Equation, Rectangular Geometry, 

HACNEM. 
 

Introduction  
One of the basic needs in designing, simulating, and 

studying nuclear reactors is neutronic analysis. There are 

various numerical methods such as finite difference, 

finite volume, finite element, and nodal for spatial 

discretization of the neutron diffusion equation. Each of 

these methods can be used according to the desired 

geometry, the type,and size of the meshes, the required 

accuracy, and the desired computational time[1-6]. 

In order to have tools with optimal computational cost, a 

method that uses large nodes about the size of the fuel 

assemblies must be used, which shows the importance of 

using nodal expansion method (NEM) in this type of 

calculation[3-7]. 

The main challenge of the nodal expansion method is its 

relatively low accuracy. In this paper, using the High-

order nodal expansion method and nodes with the size of 

fuel assemblies, the accuracy of the calculations 

increases significantly. The method is: using different 

momentum and Galerkin weight functions in the average 

current nodal expansion method without reducing the 

size of the nodes and investigating the accuracy of 

Adjoint and Neutron Diffusion Equation both locally 

(relative power distribution) and in general (effective 

multiplication factor). 

Diffusion Equation Solution by NEM 

The steady-state multi-group neutron diffusion equation 

is given in Eq.1. By discretizing Eq.1 according to Fig.1 

for Rectangular geometry and performing integration and 

mathematical simplifications, finally, three equations of 

balance, coupling, and high order for this geometry are 

obtained by Eqs 2 to 4, respectively. Also, these steps for 

hexagonal geometry are performed according to Fig.2, 

and the equations of balance, coupling and, high order are 

obtained as Eqs. 5 to 7. It should be noted that the 

parameters in the equations are available in the references 

and will be given in the full article. 
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Figure 1. The nodal coordinate system for rectangular 

geometry. 
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Figure 2. The nodal coordinate system for hexagonal 

geometry. 
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Results and discussion  
After calculations with Momentum and Galerkin 

weighting functions for rectangular geometry (BIBLIS-

2D) and hexagonal geometry (IAEA-2D), the results of 

thermal neutron flux with Momentum weighting 

functions for recangular and Galerkin weighting 

functions hexagonal geometry (as a part of results in this 

extended abstract) are shown in Fig.3. Also the relative 

power (RP), error of relative rower (ERP), and effective 

multiplication factors(Keff) are given in Table1. It should 

be noted that the execution time of the codes is related to 

the size of the nodes and has a weak dependency on the 

different weighting functions. 

 

 

 

 

 

 

 

 

 

Figure 3. Thermal neutron flux distribution in IAEA-2D 

(left) and BIBLIS-2D (right) with Galerkin and 

Momentum weighting functions, respectively. 

 

Table 1. Calculated effective multiplication factors and 

relative power values. 

 Keff 

Keff 

Error 

(pcm) 

Max. 

ERP (%) 

Ave. 

ERP(%) 

B
IB

L
IS

-2
D

 Momentum 

weighting 

functions 

1.02534 21 1.18 0.42 

Galerkin 

weighting 

functions 

1.02540 27 1.45 0.62 

IA
E

A
-2

D
 

Momentum 

weighting 

functions 

1.00420 129 11.88 4.96 

Galerkin 

weighting 

functions 

1.00534 16 8.88 3.52 

 

Conclusions  
Regarding the results, it was concluded that in order to 

increase accuracy with the acceptable time of computing 

(4 Seconds for rectangular geometry and 28 seconds for 

hexagonal geometry with Intel® Core™ i7-4510U 

Processor), the Momentum weighting function for 

rectangular geometry and the Galerkin weighting 

function for hexagonal geometry can be used to discretize 

equations without reducing the node size. 

Therefore, in order to increase the accuracy while 

maintaining the speed of calculations, without reducing 

the size of nodes, the appropriate weight function can be 

used in discretization, which can be very useful in 

performing calculations of different transients. 
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