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Abstract  
We have studied the binding energies of a group of single Λ-hypernuclei in a relativistic approach 

and modeled the single Λ-hypernuclei as a Λ-core binary system. We have selected the Hellmann 

potential for interaction between the Λ particle and the core. The Dirac equation by using this 

potential has been solved under the presence of pseudo-spin symmetry in terms of the generalized 

parametric Nikiforov-Uvarov method. Our results were in agreement with experimental values and 

other theoretical works. Hence, this model is applicable for the Λ-hypernuclei. 
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Introduction  
The Λ-nucleus interaction is the principal purpose of 

hypernuclear research [1]. Because of a new degree of 

freedom, the strangeness, the Λ hyperon does not suffer 

from Pauli blocking by nucleons of an ordinary nucleus 

[2, 3]. Hence, the Λ particle can penetrate the nucleus 

and form strongly bound hypernuclear states, the so-

called single Λ-hypernuclei [3].  

In this work, we model the single Λ-hypernuclei as a Λ-

core binary system like a single nucleon coupled to the 

whole nuclei to calculate the binding energies of the Λ 

hyperon. We use the Hellmann potential [4] as the 

potential between the Λ particle and the core. This type 

of potential is good enough for defining nucleon-core 

interaction [5]. Hence, this is suitable for the Λ-core 

system. Further, it is common to assume the single Λ-

hypernuclei as a Λ-core binary system. The binding 

energies of the ground [6, 7] and first excited [7] states 

of various single Λ-hypernuclei recently were calculated 

in the non-relativistic approach by solving the 

Schrödinger equation for the Λ-core system with the 

Hulthén potential [8]. In addition, the binding energies 

of the ground and excited states and the root mean 

square (RMS) radii of several single Λ-hypernuclei 

were estimated in relativistic form using Woods–Saxon 

potential [9] under spin symmetry by hyperon-core 

model [10].  

The solution of the Dirac equation 
To characterize relativistic bound states of a spin-1/2 

hyperon in the hypernuclei, we consider the wave 

function of the single hyperon satisfies the time-

independent Dirac equation in the following form [11, 

12] 
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where M, E, and p̂ are the single-particle rest mass, total 

relativistic energy, and the momentum operator, 

respectively. Furthermore, S(r) and V(r) represent the 

attractive scalar and repulsive vector potential. The 

momentum operator and the Dirac matrices are defined 

as follows: 
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where 
i are two-dimensional Pauli matrices. Further, I 

is the identity matrix. The Dirac Hamiltonian in a 

central potential can commute with the total angular 

momentum ĵ and the spin-orbit coupling 

operator K̂=β(σ. +1)L , where L  is the orbital angular 

momentum. The eigenvalue of the total angular 

momentum ĵ is j. The eigenvalues of spin-orbit coupling 

operator K̂  are  =  (j+1/2). The positive sign is for the 

unaligned spin, and the negative sign is for the aligned 

spin. Thus, we can write the Dirac spinors in terms of 

the total angular momentum j, the spin-orbit quantum 

number , and the radial quantum number nr in a central 

field as  
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where 
,

( )
nr

F r


 are the upper components, 
,

( )
nr

G r


 are 

the lower components of the Dirac spinors. 

( , )
l

jmY   and ( , )
l

jmY   are the spherical harmonic 

functions, in which m is the projection of the angular 

momentum on the z-axis. In addition, l and l are the 

orbital angular momentum quantum numbers indicating 

the spin and pseudo-spin quantum numbers. 

Also, we use The Hellmann potential as the potential 

between the Λ particle and the core that is defined as 

[13]  
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where a and b are assumed as the strengths of the 

Coulomb and the Yukawa potentials and α as the 

screening parameter. 

To find the energy equation under the pseudo-spin 

symmetry, we derive the following second-order 

equation from Eq. (1) 
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by considering [13] 
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we solve it with the Nikiforov-Uvarov method that has 

been expressed in ref. [11]. So, the energy equation 

under the pseudo-spin symmetry can be written as Eq. 

(7)  
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by using the following transformation: 
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Results and discussion  
Our objective is to find the binding energies of the 

ground and excited bound states of Λ particle by using  

the relativistic energy equation. Therefore, we apply: 

Mc2 = 1115 MeV [10]; E=-(-EB+ Mc2) [10], where EB is 

the binding energy of the Λ hyperon of the particular 

state; n=1 [13]; and l   [13] to find strengths of 

Coulomb (a) and the Yukawa (b) potentials in MeV and 

α as the screening parameter in fm-1 by fitting with the 

experimental results. At last, we calculate binding 

energies of the 1s and 1p states of the Λ particle in a 

group of single Λ-hypernuclei and list them in tables 1 

and 2. Besides, we calculate the binding energies of Λ 

in 1d and 1f states for Λ 
89Y that can be seen in table 3.  

 

Table 1. The ground state binding energy of Λ (MeV)  

Hypernuclei 
Coefficients of the 

potential 
EB-Our EB-Exp.[14] EB-Other.[10] EB-Other.[7] 

Λ 
13C 

α 0.15 

11.9197 11.69 11.41 11.447 a 0.4096 

b -58.6925 

Λ 
16N 

α 0.12 

12.5293 13.67 11.40 12.967 a 1.85156 

b -57.8448 

Λ 
16O 

α 0.12 

13.2626 13.0 12.86 12.645 a 2.1925 

b -56.5075 

Λ 
28Si 

α 0.05 

17.5490 17.20 17.09 17.240 a 4.3675 

b -53.4810 

Λ 
32S 

α 0.04 

17.8397 17.50 17.33 - a 3.3773 

b -53.6510 

Λ
 40Ca 

α 0.083 

18.9076 18.701.1[15] 18.39 18.493 a -45.0112 

b -95.5675 

Λ 
51V 

α 0.084 

21.8460 21.50 21.65 18.964 a -56.5173 

b -108.7796 

Λ 
89Y 

α 0.0318 

23.9859 23.60 23.69 19.928 a -102.8435 

b -157.9973 

 



 

Table 2. The first excited state binding energy of Λ(MeV)  

Hypernuclei EB-Our 
EB-Exp. 

[14] 

EB-Other 

[10] 

EB-

Other.[7] 

Λ 
13C 0.8083 0.8 0.85 2.24 

Λ 
16N 2.2686 2.84 2.79  2.53 

Λ 
16O 2.5287 2.5  2.32 - 

Λ 
28Si 7.6734 7.6  7.68 8.543 

Λ 
32S 8.3207 8.20 8.25 - 

Λ
 40Ca 11.0832 11.00  11.06 8.138 

Λ 
51V 13.4855 13.4  13.48 9.09 

Λ 
89Y 15.1186 17.7  17.53 12.834 

Table 3. 1d and 1f binding energies of Λ in Λ89Y(MeV)  

Λ 
89Y 

 EB-Our(MeV) EB-Exp. [14] EB-Other.[10] 

1d 3.6855 3.7 3.10 

1f 10.9775 10.9 11.13 

Conclusions 
In this work, we found the energy equation under 

pseudo-spin symmetry. Then, we calculated the 

optimum form of Hellmann potential for any of the 

studied Λ–hypernuclei and the binding energy of Λ for 

them. Our results are in agreement with the 

experimental values and other theoretical works. 

However, there is a notable difference between 

experimental data and our calculated binding energy in 

a few cases like the 1p state of Λ 89Y. Hence, this model 

is applicable for the Λ-hypernuclei. 
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